Дан конус с вершиной M, радиус основания которого 6sqrt6. На окружности его основания выбраны точки A, B, C так, что углы BMA, AMC, CMB равны alpha каждый, причём sin(alpha/2)=sqrt(5/7). Точка F выбрана на дуге BC окружности основания конуса, не содержащей точку A так, что объём пирамиды MABFC наибольший. Найти расстояние от точки F до плоскости (MAB)

№ задачи в базе 383


Дан конус с вершиной M, радиус основания которого 6sqrt6. На окружности его основания выбраны точки A, B, C так, что углы BMA, AMC, CMB равны alpha каждый, причём sin(alpha/2)=sqrt(5/7). Точка F выбрана на дуге BC окружности основания конуса, не содержащей точку A так, что объём пирамиды MABFC наибольший. Найти расстояние от точки F до плоскости (MAB)


Ответ: 6


Ключевые слова:
Геометрия Стереометрия способ Вспогательного объёма Конус Пирамида Тригонометрия

Примечание:
#см Указание 383 Аналогичные задачи:   384    385    387    388    389    390    391    392  

Предыдущая задача
Следующая задача