Для каждого натурального числа n обозначим через n

произведение первых n натуральных чисел (1 № задачи в базе 2874


Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1). а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 9 нулями? б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 23 нулями? в) Сколько существует натуральных чисел n, меньших 100, для каждого из которых десятичная запись числа n∙ (100 - n)! оканчивается ровно 23 нулями


Ответ: а) да б) нет в) 16


Ключевые слова:
Задания ЕГЭ части 2 Задачи 19 Числа и их свойства Критерии ЕГЭ по математике 2023 Математика 36 вариантов ЕГЭ 2023 ФИПИ школе Ященко ЕГЭ по математике 2022 Математика 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 ( из 36 вариантов заданий ЕГЭ 2022 ФИПИ Ященко) ЕГЭ по математике 2021 Математика 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко

Примечание:
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1) ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 Задание 18 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 19


🔥 Оценки экспертов решений задания 19 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет

Предыдущая задача
Следующая задача