Досрочный ЕГЭ по математике 2024


Показаны 20 из 24 задач

ID
Текст задачи
Примечание
Найдите все значения a, при каждом из которых уравнение sqrt(x^2-a^2)=sqrt(3x^2-(3a+1)x+a) имеет ровно один корень на отрезке [0;1]
Найдите все значения a, при каждом из которых уравнение sqrt(x^2-a^2) = sqrt(3x^2-(3a+1)x+a) имеет ровно один корень ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 18
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1. б) Найдите расстояние от центра описанной окружности до BC, если C1B1=18, а ∠BAC = 30°
Дан остроугольный треугольник ABC. В нём высоты BB1 и CC1 пересекаются в точке Н. а) Докажите, что ∠BAH =∠BB1C1 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 17
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость, пересекающая ребро CC1 в точке L. а) Докажите, что L - середина CC1. б) Найдите расстояние от точки B до плоскости сечения
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=3, AD=4, AA1=6. Через точки B1 и D параллельно AC проведена плоскость ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно. Известно, что четырёхугольник MB1KD – ромб. а) Докажите, что точка М - середина ребра АА1. б) Найдите высоту призмы ABCDA1B1C1D1, если площадь её основания ABCD равна 4, а площадь ромба MB1KD равна 4sqrt2
Дана правильная четырёхугольная призма ABCDA1B1C1D1. Плоскость α проходит через вершины В1 и D и пересекает ребра АА1 и СС1 в точках М и К соответственно ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 14
Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события "сумма выпавших очков окажется равна 10"
Игральную кость бросили два раза. Известно, что три очка не выпали ни разу ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 5
В треугольнике ABC стороны AC и BC равны. Угол С равен 120°, угол CBD - внешний. Найдите угол CBD. Ответ дайте в градусах
В треугольнике ABC стороны AC и BC равны. Угол С равен 120°, угол CBD - внешний ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 1
Решите уравнение 3^(1-x)=81
Решите уравнение 3^ 1-x = 81 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 6
Найдите значение выражения log_{2}(56)-log_{2}(7)
Найдите значение выражения log_2 56 - log_2 7 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 7
На рисунке изображён график y=f'(x) - производной функции f(x), определённой на интервале (−3; 8). В какой точке отрезка [−2; 3] функцияf(x) принимает наименьшее значение?
На рисунке изображён график y=f'(x) - производной функции f(x), определённой на интервале (−3; 8) ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 8
Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч2. Скорость v вычисляется по формуле v=sqrt(2la), где l - пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,8 километра, приобрести скорость 120 км/ч. Ответ дайте в км/ч2
Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч2 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 9 # Задача-аналог   4524  
Решите неравенство log_{3}(1/x-1) + log_{3}(1/x+1) <= log_{3}(8x-1)
Решите неравенство log_3 (1/x-1) + log_3 (1/x+1) <= log_3 (8x-1) ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 15
Решите неравенство log_{11}(2x^2+1) + log_{11}(1/(32x)+1) >= log_{11}(x/16+1)
Решите неравенство log_11 (2x^2+1) + log_11 (1/(32x)+1) >= log_11 (x/16+1) ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 15
а) Решите уравнение 2cos(x)-sqrt(3)sin^2(x)=2cos^3(x). б) Найдите все корни этого уравнения, принадлежащие отрезку [-(7pi)/2; -2pi].
Решите уравнение 2cosx + sqrt3 sin^2 x =2cos^3 x ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 13
а) Решите уравнение 2cos(x)+sin^2(x)=2cos^3(x). б) Найдите все корни этого уравнения, принадлежащие отрезку [-(9pi)/2; -3pi].
Решите уравнение 2cosx +sin^2 x =2cos^3 x ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 13
а) Решите уравнение sin^2(x+pi)-cos(-(3pi)/2-x)=0. б) Найдите все корни этого уравнения, принадлежащие отрезку [-(7pi)/2; -2pi].
Решите уравнение sin^2(x+pi) -cos(-(3pi)/2-x) =0 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 13
а) Решите уравнение cos^2(pi-x)-sin((3pi)/2+x)=0. б) Укажите корни этого уравнения, принадлежащие отрезку [-(5pi)/3; -pi/2].
а) Решите уравнение cos^2(pi-x)-sin((3pi)/2pi+x)=0 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 13 Восток
В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 107°. Найдите угол C
В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 107° ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 1
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 30. Найдите площадь поверхности шара
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 30 ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 3
Вероятность того, что на тестировании по математике учащийся А. верно решит больше 4 задач, равна 0,76. Вероятность того, что А. верно решит больше 3 задач, равна 0,89. Найдите вероятность того, что A. верно решит ровно 4 задачи
Вероятность того, что на тестировании по математике учащийся А. верно решит больше 4 задач ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 4 # Задача-аналог   3487  
а) Решите уравнение 2cos^2(x)+sin^2(x)=2cos^3(x). б) Укажите корни этого уравнения, принадлежащие отрезку
а) Решите уравнение 2cos^2(x) +sin^2(x)=2cos^3(x) ! Досрочный ЕГЭ 29-03-2024 профильный уровень Задание 13 Центр

Показать ещё...