ЕГЭ по математике резервный день 26-06-2023


Показаны 3 из 3 задач

ID
Текст задачи
Примечание
а) Решите уравнение sin(2x)=sin(x)-2sin(x-(3pi)/2)+1 б) Найдите все корни этого уравнения, принадлежащие отрезку [(3pi)/2; 3pi].
а) Решите уравнение sin2x = sinx - 2sin(x - (3pi)/2) +1 ! ЕГЭ 2023 по математике (резервный день) 26-06-2023 Задание 12
Решите неравенство (log_{4}(64x)) / (log_{4}(x)-3)+(log_{4}(x)-3)/log_{4}(64x) >= (log_{4}(x^4)+16)/((log_{4}(x))^2-9)
Решите неравенство log_{4}(64x) / log_{4}(x)-3 +log_{4}(x)-3 /log_{4}64x >= log_{4} x^4 +16 / log^2_{4} x -9 ! ЕГЭ 2023 по математике (резервный день) 26-06-2023 Задание 14
Найдите все значения параметра а, при которых уравнение x*sqrt(x-a)=sqrt(4x^2-(4a+2)x+2a) имеет ровно 1 корень на отрезке [0; 1]
Найдите все значения параметра а, при которых уравнение x sqrt(x-a) = sqrt(4x2 -(4a+2)x+2a) имеет ровно 1 корень на отрезке [0; 1] ! ЕГЭ 2023 по математике (резервный день) 26-06-2023 Задание 17

Показать ещё...