ЕГЭ по математике 24-06-2019 резервный день


Показаны 5 из 5 задач

ID
Текст задачи
Примечание
В правильной треугольной призме ABCA1B1C1 сторона основания равна 2 и боковое ребро 6. M — середина ребра A1C1, O — точка пересечения диагоналей грани ABB1A1. а) Докажите, что точка пересечения OC1 с четырехугольником, являющимся сечением призмы плоскостью ABM, совпадает с точкой пересечения диагоналей этого четырехугольника б) Найдите угол между OC1 и сечением призмы плоскостью ABM
В правильной треугольной призме ABCA1B1C1 сторона основания равна 2 и боковое ребро 6 ! ЕГЭ 2019 резервный день профильный уровень Задание 14
а) Решите уравнение 9^cos(x)+9^-cos(x)=10/3 б) Укажите корни этого уравнения, принадлежащие отрезку [2pi; (7pi)/2].
Решите уравнение 9^cos(x)+9^-cos(x)=10/3 ! ЕГЭ 2019 резервный день профильный уровень Задание 13
Решить неравенство log_{2}((x-1)(x^2+2)) <=1+ log_{2}(x^2+3x-4)-log_{2}(x)
ЕГЭ 2019 резервный день профильный уровень Задание 15
Найдите все значения параметра a, при которых уравнение (x^2-a(a+1)x+a^3)/sqrt(2+x-x^2)=0 имеет 2 различных корня
Найдите все значения параметра a, при которых уравнение (x^2+2x+a)/(4x^2-3ax-a^2)=0 имеет 2 корня! ЕГЭ 2019 резервный день профильный уровень Задание 18
В треугольнике ABC с прямым углом С проведена высота CH. На отрезках AH и HB как на диаметрах построены окружности. а) Докажите, что отношение площадей кругов, построенных на этих диаметрах, равно (tg /_ABC)^4 б) Окружность с центром O1, лежащим на AH, пересекает АС второй раз в точке P. Окружность с центром O2, лежащим на HB, пересекает BC второй раз в точке Q. Найдите площадь четырехугольника PO1O2Q, если АС=12, BC=10
В треугольнике ABC с прямым углом С проведена высота CH ! ЕГЭ 2019 резервный день профильный уровень Задание 16

Показать ещё...