Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности

Тренировочный вариант 323 от Ларина Задание 16 № задачи в базе 2482


Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности, касающейся основания BC. А) Докажите, что расстояние от середины отрезка O1O2 до точки С вдвое меньше O1O2. Б) Известно, что радиус первой окружности в пять раз меньше радиуса второй. В каком отношении точка касания первой окружности с боковой стороной треугольника делит эту сторону?


Ответ: 1:2

Ключевые слова:
Задания ЕГЭ части 2 Задачи 17 на планиметрию ЕГЭ по математике 2021 Ларин варианты 323 тренировочный вариант от Ларина Геометрия признак Параллельности прямых Планиметрия Теоремы планиметрии Подобие треугольников Свойство медианы гипотенузы Треугольник Окружность
ФИПИ 2025 🔥

NEW Тренажёр ЕГЭ первой части

Примечание:
Точка O1 – центр вписанной окружности равнобедренного треугольника ABC, а O2 – центр вневписанной окружности ! Тренировочный вариант 323 от Ларина Задание 16 # Решение - Елены Ильиничны Хажинской


🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет

Предыдущая задача
Следующая задача