Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F соответственно

36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 16 № задачи в базе 3514


Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F соответственно. Точка D - основание высоты, опущенной из вершины C. I и J - центры окружностей, вписанных в треугольники BCD и ACD. а) Докажите, что I и J лежат на отрезке EF. б) Найдите расстояние от точки C до прямой IJ, если AC=15, BC=20


Ответ: 6sqrt2


Ключевые слова:
Задания ЕГЭ части 2 Задачи 17 на планиметрию ЕГЭ по математике 2023 Математика 36 вариантов ЕГЭ 2023 ФИПИ школе Ященко Геометрия Планиметрия Теоремы планиметрии Треугольник Окружность Тригонометрия

Примечание:
Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F соответственно ! 36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 16


🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет

Предыдущая задача
Следующая задача