Четырёхугольник ABCD вписан в окружность, причём сторона CD - диаметр этой окружности

36 вариантов ФИПИ Ященко 2022 Вариант 35 Задание 16 № задачи в базе 2773


Четырёхугольник ABCD вписан в окружность, причём сторона CD - диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке E, а окружность - в точке F, причём H - середина AE. а) Докажите, что четырёхугольник BCFE - параллелограмм. б) Найдите площадь четырёхугольника ABCD, если известно, что AB=5 и AH=4


Ответ: 67,5


Ключевые слова:
Задания ЕГЭ части 2 Задачи 17 на планиметрию ЕГЭ по математике 2022 Математика 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 35 ( из 36 вариантов заданий ЕГЭ 2022 ФИПИ Ященко) ЕГЭ по математике 2021 Математика 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Геометрия Планиметрия Теоремы планиметрии свойство Вписанных углов свойство Пересекающихся хорд Признаки параллельных прямых Треугольник Окружность Четырёхугольник Тригонометрия Задачники Пособия

Примечание:
Четырёхугольник ABCD вписан в окружность, причём сторона CD - диаметр этой окружности ! 36 вариантов ФИПИ Ященко 2022 Вариант 35 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 25 Задание 16


🔥 Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Сканы реальных работ прошлых лет

Предыдущая задача
Следующая задача